calculus help please! (pg. 2)
|
View this Thread in Original format
gtron |
i know i'm new so possibly disregard the dumb questions - i'm guessing this is something for school and not fun?
anyway, i haven't looked at this kinda crap for a while but i'll give it a go tomorrow when i'm not buzzed if no one else has. ;) |
|
|
Nrg2Nfinit |
quote: | Originally posted by gtron
i know i'm new so possibly disregard the dumb questions - i'm guessing this is something for school and not fun?
anyway, i haven't looked at this kinda crap for a while but i'll give it a go tomorrow when i'm not buzzed if no one else has. ;) |
why dont you try it now. it should be easier when your stoned |
|
|
Omega_M |
the answer should be zero in my opinion. if you solve the integral the final answer = 4sin(n*pi)/(n*pi) and sin(n*pi) = 0 for n=1,2,3... |
|
|
_Nut_ |
quote: | Originally posted by Nrg2Nfinit
yeah me 2
someone must know how to do this
guuuuuuuuuuuuuuuuuuuuuuurn |
I'll take a look at it. been a few years since Ive had calc... but I made it through calc 1,2,3 and DiffEq...
So the question is whether or not I'll be able to remember this |
|
|
Omega_M |
Check my calculation...I might be wrong. Been a while since I have solved these integrations. :o I used integration by parts.
 |
|
|
stevieboy32808 |
I almost got that! One of us is correct.
 |
|
|
Nrg2Nfinit |
quote: | Originally posted by Omega_M
Check my calculation...I might be wrong. Been a while since I have solved these integrations. :o I used integration by parts.
|
that looks like you just solved for the first part integral of 2cos(nTTx)
what i had up there posted that i crossed out on the left hand side.
The whole thing can be split up into two integrals the second integral is -xcos(nTTx) since your expanding (2-x)(cos(nTTx) |
|
|
Nrg2Nfinit |
you have to also remember that when using cos for n= odd you will get different values then for N = even, since for whole numbers cos goes from - 1 to +1. When cos n is even cos gives you +1 and when its odd it gives you -1. therefore you must solve for when N= odd and when N= even. |
|
|
Omega_M |
Or better still, in a bit more detail. Using the functions and properties in the box.
 |
|
|
Nrg2Nfinit |
quote: | Originally posted by stevieboy32808
I almost got that! One of us is correct.
|
lol close but thats wrong.. why dont you guys take out all those nasty constants from the integrations to make your live easier :( |
|
|
Nrg2Nfinit |
wait you did pull out the constants.. see i dont nkow integration by parts i just use the table method it works though.. i got the right solution ill post it. |
|
|
|
|